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FOREWORD

In these notes, I will tell how in 1953–1954 the first version of the “Godunov’s scheme”
was invented and how it was modified in the subsequent works by myself (until 1969) and
by others at the Institute of Applied Mathematics in Moscow (now named after its founder,
academician M. V. Keldish).

Parallel to the modifications which I will describe below (Sections 1, 2), other algorithms
were being developed as well at that time, in particular second-order accurate methods for
gas-dynamical flows with a small number of strong and weak discontinuities [1, 27, 26].
Our research activity was related to performing a large number of calculations. The first
codes for this purpose were written by V. V. Lucikovich. As the problems became more
complex, more artful techniques were required for splitting the computational domain into
sub-domains. A. V. Zabrodin was a master in this field. Usage of such splitting techniques
lead to the necessity to make the grid generation automatic.

Between 1961 and 1968, together with G. P. Prokopov, we worked long and hard on the
methodology for the generation of moving grids, which in 1968–1969 were included into
the commercial codes by A. V. Zabrodin and programmers G. M. Novozhilova and G. B.
Alalikin [39, 13, 31]. The problems that arose in the grid generation focused our attention on
the solution of elliptic systems [20, 38]. Later these methods were used in elliptic spectral
problems [30, 21], which attracted my attention to the problems of numerical linear algebra.
A whole host of surprising observations made at that time provided a source of seminar
discussions at Moscow University and, after 1969, at Novosibirsk University for years to
come. These discussions resulted in the development of spectral dichotomy methods [18, 16]

1 Originally published as “Vospominaniya o raznostnyh shemah” by Nauchnaya Kniga, Novosibirsk, 1997.
Translated from the Russian by Konstantin Kabin, Department of Atmospheric, Oceanic and Space Sciences, Uni-
versity of Michigan, Ann Arbor, MI, and Natasha Flyer, National Center for Atmospheric Research, Boulder, CO.
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and high-precision methods for the calculation of singular eigenvectors, which became the
basis for our books [18, 32]. It would be hard to guess that this research originated from the
development of the methods for gas-dynamical calculations and the grid generation for these
calculations.

I started to study the theory of differential equations at Moscow University at the seminars
of I. M. Gelfand and I. G. Petrovskii. The latter drew my attention to the problems of gas
dynamics and suggested the use of relaxation methods for the study of flows with both
subsonic and supersonic regions. My master’s thesis was devoted to this issue; I considered
the relaxation of a flow in a nozzle (but only in the subsonic case and with the use of some
artificial time derivatives introduced into Chaplygin’s equation). A version of Petrovskii’s
idea about relaxation to a steady state, applicable for practical problems, was published
in 1961 [31]. This publication was based on a much later calculation performed with our
algorithm. The technical formulation of this algorithm was the essence of the master’s thesis
of G. P. Prokopov, which I supervised. The code itself was written by G. N. Novozhilova.

The development of difference schemes for gas dynamics was parallel to the attempts
to formulate and adapt the concept of a generalized solution for quasi-linear systems of
equations. Usually the hypothesis about possible definitions and properties of generalized
solutions preceded the construction of the difference schemes which tried to make use of
those properties. At the same time, I was trying to justify the hypothesis. To my great-
est frustration those attempts were unsuccessful, and even worse, they often resulted in
contradictory examples. Not surprisingly, those examples put me in despair. Meanwhile,
the difference scheme, or more precisely its modification utilizing Euler’s coordinates and
moving grids following the course of principle strong and weak discontinuities, was actively
used in commercial calculations.

1. HOW THE SCHEME WAS INVENTED

In the autumn of 1953, M. V. Keldish and I. M. Gelfand asked me to develop a version of a
method published by J. Von Neumann and R. D. Richtmyer (1950). Their method is based on
the introduction of artificial viscosity into the gas-dynamics equations. I had been strongly
encouraged to finish the development of a suitable algorithm for commercial purposes by
the spring of 1954, the time when the first electronic computer, “Strela” (Arrow), was to
arrive at our institute. It was to be the very first one of its kind in mass production.

I was informed that a possible version of the required algorithm was already prepared in
our institute by A. I. Zhukov. Being allowed to read his report, I was given the freedom to
modify his methods or suggest something new. From the point of view of the institute’s senior
scientists, it was critical to advance the research frontier in computational gas dynamics so
as to meet the deadline.

The method suggested by Zhukov was exactly the same as the Lax scheme, published
a year later [37]. However, Zhukov’s report had a number of conjectures, formulated as
truth-like hypotheses, upon which the construction of the scheme was based. Looking back,
I can now say that some of them turned out to be wrong. However, when first reading the
report, I did not doubt these hypotheses. I, therefore, decided to use them in my work.

The principal difference between the method proposed by Zhukov and that of Von
Neumann and Richtmyer is that Zhukov did not use artificial viscosity. As a result of his
numerical experiments, Zhukov concluded that the viscous smearing of the shock waves
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occurs automatically in the finite-difference solution due to the discrepancy between the
discrete approximation and the exact continuous differential equations. He suggested using
numerical viscosityto represent the deviations of the difference scheme from the continuous
equations, resulting in the formulation of thefirst differential approximation.2

Zhukov tried to use second-order schemes first, but they produced strong oscillations near
the shock front. He explained them with the help of the exact solutions (in terms of Airy
functions) of the linearized equations with artificial viscosity approximating the numerical
viscosity of the difference scheme. Thus, Zhukov came to the conclusion that it is impossible
to use second-order accurate schemes and concentrated on the development of a first-order
scheme, using both the simplest quasi-linear Burgers’ equation and gas dynamic equations
in Lagrangean coordinates as the models. All his attention was concentrated on studying
the solutions of a problem with a steadily moving shock front. Using the first differential
approximation, this problem can be reduced to a set of ordinary differential equations whose
solutions can be compared with the results of the finite difference calculations. Using
these comparisons, Zhukov formulated a necessary condition which should be satisfied
by any difference scheme. The condition was that the equations of the first differential
approximation should have the form of conservation laws. However, the condition was
given in the form of a hypothesis as both a necessary and sufficient condition.

I did not question this statement and used it as a cornerstone in my attempts to build
a second-order scheme which did not exhibit oscillations. I started examining different
second-order schemes for which the exact conservation laws were not satisfied, but those
of the first differential approximation were. All schemes were checked via the calculation
of a single solution chosen as a typical model problem.

Eventually, I found a rather satisfactory scheme. It took about three months of intensive
work. N. M. Zueva had been helping me with analytical manipulations and evaluation of
the residual terms, while the numerical calculations were performed by V. V. Paleichik and
two of her students who were learning the art of using mechanical adding machines made
by Mercedes. Keldish and Gelfand payed strong attention to this research and listened to
the progress reports biweekly.

In the next phase of research, the robustness of the scheme was to be tested in calculations
with different spatial step sizes and for a variety of different solutions. However, studying
the dependence of the solution on the spatial step size, we discovered that our previous
three months of work were completely misdirected.

In order to explain the obstacles we faced, I have to tell about another hypothesis from
Zhukov’s report. He compared the results of integration of the first differential approxima-
tion with the results of finite-difference calculations and noticed a discrepancy. He suggested
that this discrepancy would go away as the spatial step approaches zero.

I decided to verify this statement and asked V. V. Paleichik to perform the corresponding
calculations. One of her students was doing the calculations with one possible step size,
while another with one-half of that step. In just five to ten minutes Paleichik started to
reproach me with indignation for this useless experiment. After the first stage, the results of
both calculations turned out to be identical, and it could not be otherwise since the spatial
step did not appear in the formulas by itself. The scheme depended only on the ratio of time
to spatial step, which we did not change in order to keep Courant’s number constant. Since
the finite-difference profiles do not depend on the spatial step size, it is impossible that they

2 In western literature, this is referred to as the lowest-ordermodified equation.
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would approach the solutions of the first differential approximation as the step goes to zero.
Comparing the exact and finite-difference shock speeds a difference of 3 to 4% was noted,
leaving no hope that this difference would decrease for smaller spatial steps.

As is natural, the above observations brought me to a stressed condition and made me
reconsider all the previous points of view.

First of all, it became obvious that a difference scheme should provide a correct speed for
a steadily moving shock and correct values of the state variables on either side of the shock,
even for a step size equal to 1.The hope that the precision in shock wave calculations could
be gained through smaller spatial steps disappeared completely.

Thus, instead of using simplifications resulting from the first differential approximation
and its conservation laws, solving the problems required that theexact conservation lawsbe
satisfied. Following this idea, it was suggested to write the approximation to the equations

∂u

∂t
+ ∂p(v)

∂x
= 0,

∂v

∂t
− ∂u

∂x
= 0

so that the difference equations would also have the form of conservation laws,

um+1
n − um

n

1t
+ Pm

n+1/2− Pm
n−1/2

1x
= 0,

vm+1
n − vm

n

1t
− Um

n+1/2−Um
n−1/2

1x
= 0.

The gas speed is described by bothum
n andUm

n+1/2. Similarly, the specific volumev and its
related quantity, pressurep(v), are approximated by bothvm

n andPm
n+1/2, respectively. The

formulas relating the lower and upper case letters determine the scheme we are considering.
The scheme of choice should always provide a smooth profile of the discrete shock wave.
From this monotonicity property together with the difference conservations laws it can be
deduced that the shock is moving with a correct speed and the values on the left and right
of the shock are related by the well-known Hugoniot relations.

In the first stage I decided to achieve smooth profiles for weak waves, i.e., for the equations
of acoustics, which can be considered as gas dynamics with the simplest equation of state
p(v)= −a2v (a2= const). In this case the shocks become jumps in the Riemann invariants
u± av, and the equations are reduced to a canonical form

∂(u± av)

∂t
∓ a

∂(u± av)

∂x
= 0.

I decided to choose difference schemes which could be reduced, at least for this simplest
case, to independent equations for the Riemann invariantsu ± av. I started with a known
and widely used simple scheme preserving monotonicity of the Riemann invariants. This
monotonicity was a guarantee for the smoothness of shocks, which was what I needed. In
any case, I was unable to come out with something else and time was running out—they
had already started to put together “Strela,” delivered from the plant. In addition, I was able
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to show that in the linear case only first-order schemes can preserve monotonicity. So I
stopped trying to devise a second-order method.

The chosen scheme in the simplest case can be written as
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which becomes a scheme in discrete conservation form if we define
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It was decided to use this scheme in the general nonlinear case. However, it was then
necessary to replace the constanta in the formulas forPm

n+1/2 andUm
n+1/2 with some function

of the solutionam
n+1/2. The most natural guesses were
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We investigated these formulas in experimental calculations, in which we checked the
monotonicity of a shock wave for different values on its left and right. Those values were
always related by the Hugoniot conditions.

Proceeding with these calculations and observing the shock profiles, I started experiment-
ing with other formulas foram

n+1/2. In particular, requiring that monotonicity is preserved
even at the first step I was able to find a reasonable interpolation formula foram

n+1/2 which
led to the most acceptable results.

Here I have to add a few details to my story to remove some of the simplifications I have
made. As a matter of fact, the experiments I am describing were mostly performed not on
the simplest model for gas-dynamics described above, but on the following system of three
equations

∂u

∂t
+ ∂p(v, E)

∂x
= 0,

∂v

∂t
− ∂u

∂x
= 0,

∂(E + u2/2)

∂t
+ ∂(pu)

∂x
= 0,
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for which the difference conservation laws were written as
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The search for an interpolation formula foram
n+1/2, in this case, is equivalent to the search

for expression forPm
n+1/2,U

m
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m
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m
n+1, v

m
n+1, Em

n+1. We were able to find
an acceptable variant rather quickly—in two or three weeks. It is important to notice that
in those formulas the role ofam

n+1/2 was played by an expression√
(γ + 1)Pn+1/2+ (γ − 1)pn

vn
,

which depends onPn+1/2. (In these experiments the equation of the state wasE= pv
γ−1.)

It occurred to me that I had seen this expression somewhere in the literature and I tried to
recall where.

Not long before that time, a book by L. D. Landau and E. M. Lifshitz “The Mechanics
of Continuous Media” had been published. It was in the chapter about the break up of
an arbitrary discontinuity (the Riemann problem) that I had seen the above expression. I
realized I just had to introduce some minor corrections into my interpolation formulas,
important only for strong rarefaction waves, to give the final form to my scheme. This work
was finished in the March of 1954. In the end of March, V. V. Lucikovich was added to our
group. He was to write the program on the basis of the technical requirements which he and
I had written using helpful recommendations from K. A. Semendjaev. In the end of April
I took two weeks of vacation and on the 5th of May we started experimental and applied
calculations.

On the 4th of November 1954 I defended my Ph.D. thesis, which was the description of
my scheme. However, it was only in 1959 when it was published in the literature. Until that
time I had been trying to submit it to several journals, but without any success. For example,
Applied Mathematics and Mechanicsrejected the article as purely mathematical and having
nothing to do with mechanics. One mathematical journal (I do not remember which one
exactly) rejected it for the exact opposite reason. After that Petrovskii helped me to publish
the work inMathematicheskii Sbornikwhere he was a member of the editorial board [8].

I read the paper by P. D. Lax [37] only after my thesis defense. His scheme is identical to
that of Zhukov, but his paper did not have any suspicious conjectures, which were numerous
in Zhukov’s report. It was the critical analysis of those conjectures which resulted in my
scheme. If I would have read Lax’s paper a year earlier, “Godunov’s Scheme” would never
have been created.

2. PROBLEMS OF APPROXIMATION AND EFFECTIVE ACCURACY

Of course, the work on the scheme invented in 1954 was going on at a later time as well.
The final users of our calculations were always very suspicious about it.
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In our institute, actually to be precise, in Stekhlov’s Institute, from which Keldish’s Insti-
tute separated in 1953, basic procedures for hydrodynamic calculations were established by
K. A. Semendjaev long before I came there. They were performed by a large group of ex-
clusively female operators on Mercedes-brand electrical adding machines using the method
of characteristics. Particular attention was paid to the form of the tables where the results
were recorded and to the minimization of intermediate records there. This optimization was
achieved by an efficient use of the special memory clusters of the adding machines. Final
results were always carefully plotted and checked.

The technique of these calculations was very well developed. The operators played on
the keys of the calculators like pianists while actively discussing household matters and
other problems that usually excite female interest. They were also teasing all the new and
shy young researchers of the theoretical subdivision, a group to which I, myself, belonged.
We were disparagingly referred to as “that science.” They often acidly remarked that our
pseudo-scientific explanations for the various numerical troubles which frequently hindered
the calculation usually turned out to be useless. One should keep in mind that they were
paid for the volume of calculations, as determined by the number of filled-up lines in the
tables. Any calculations with errors were not taken into account.

The visual representation of the results on graph paper always was of excellent quality.
It displayed easy-to-read images of velocity, pressure, and density fields as well as the
trajectories of the contact discontinuities. Carefully plotted characteristics allowed one to
see the domains of influence for the interesting parts of the initial conditions.

Our customers—physicists and engineers—were used to the perfect form of the calcula-
tions’ output so they were unhappy with the first results of computer calculations on the basis
of difference schemes. As it is well known now, finite-difference calculations of discontinu-
ous solutions of gas-dynamic equations have plenty of purely numerical “micro-structure,”
which looks like errors, distorting the flow field. The comparisons of computer output with
the “smoothed out” results of hand-made calculations made a negative impression on our
customers and led to the claims that the code had serious errors or the calculations were
made with the wrong initial data. We had to invest much effort into the analysis of these
complaints. Some of them found satisfactory explanations; in other cases, we had to specify
some post-processing routines to remove most of these “parasitical” effects or, occasionally,
to modify our schemes somehow.

Now I will give two examples of this kind that I find particularly interesting.
The calculations of strong isentropic rarefaction waves with my scheme resulted in a

noticeable increase in the entropy; this problem caused a lot of dissatisfaction with the
results of our calculations. A considerable decrease of spurious entropy production was
discovered three to four years later (in 1957–1958), when we started to perform two-
dimensional calculations. Those problems are usually hard to formulate in Lagrangean
coordinates, so we had to switch to the Eulerian description. This actually required additional
sophistication—we had to start using moving grids. However, the main idea of the method—
to use the exact solutions of the Riemann problem—was still applicable, although in a less
straightforward way. The first test cases for the just-written two-dimensional programs were
one-dimensional calculations which could be compared with our old results. To our great
surprise the new two-dimensional codes based on Euler coordinates produced much less
“parasitical” entropy in the rarefaction waves.

The explanation for this phenomenon is that Lagrangean coordinates are not very well
suited (even in the one dimensional case) for the formulation of “generalized solutions” of
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gas-dynamical equations. For a certain type of initial conditions, these equations allow the
formation of vacuum zones, which appear in Lagrangean coordinates as delta functions.
Singularities of this type are usually not expected in the solutions and are very badly
modeled numerically. The analysis showed that even a significant reduction of the step size
in Lagrangean coordinate around a strong rarefaction does not necessary imply that the
distance between the two adjacent points in Euler coordinates would decrease noticeably. I
used this fact in 1961 in a theoretical work [12] to prove that my scheme does approximate
(in Euler coordinates) the gas-dynamic equations in a sense of conservation laws (in the
one-dimensional case). Starting this work, I hoped to prove the convergence to the exact
solution as well, but I failed to that. Even the proven order of approximation turned out to be
2/3—less than one. Just a reminder: formally my scheme has the first order of approximation
on the basis of the first differential approximation. I should also note that apparently the
actual order of approximation is higher than 2/3. Most likely, using Glimm’s estimates
for the variation of the solution [7], one should be able to prove that this order is equal
to one, just as it looks. Unfortunately, I haven’t studied this issue any further. In the end
of the fifties, I was more interested in the question of the precision of the approximated
solutions (i.e., what power of the mesh width approximates the error between the calculated
solution and the exact one) rather than the issue of the approximation of the equations. The
obtained estimations for the approximation order played only an introductory role in the
theoretical investigations, which I never finished. However, in 1957–1958 together with
V. S. Rjabenkii, I conducted an experimental study of the convergence of the approximate
solutions obtained with my scheme to the exact ones. Observing the results, I realized that
the convergence should be understood in a “weak” rather than “strong” sense, so that large
deviations in a few points would not be important. These deviations usually result from a
collision of two shocks or a reflection of a shock from a contact.

During our discussions of this subject, Rjabenkii suggested a trick that reduces the in-
vestigation of weak convergence to the study of strong convergence forone-dimensional
problems.One should look at the integrals (or even multiple integrals) with respect to a
spatial coordinate, of the variables obeying the conservation laws, rather than at these vari-
ables themselves. We hoped to be able to demonstrate a first order of weak convergence, in
agreement with the formal order of approximation. However, to our surprise, the effective
order of approximation proved to be less than one for flows with centered expansion waves
or large gradients in smooth domains bounded by strong discontinuities.

During this time we were so busy that we did not have enough time to put our conclusions
in the form of a detailed article, one of the contributing facts being that the results were
unexpected and very unpleasant (at least for me). I limited myself just to a brief report at
one of the scientific conferences held at Moscow University. In my view, nobody paid any
attention to it. Only N. S. Bahvalov got interested and performed a theoretical study of the
convergence speed asε→ 0 for Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= ε ∂

2u

∂x2
,

which gave an estimate of the order of the error ofε|ln ε|. All my attempts to attract
attention of the numerical people (who performed the calculations) and engineers (who
used the results) to these facts did not have any success.

The major research effort of my group, which included A. V. Zabrodin, K. A.
Bagrinovskii, G. B. Alalikin, and me, at that time was focused on the preparation for the
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two-dimensional calculations, which I will tell about below. Thus, the question of whether
the first-order scheme gives a first-order convergence rate, or more precisely—what is this
order—remained unsolved.

I know that in later works of B. van Leer [42], P. R. Woodward and P. Collela [43], P. D.
Lax [35], A. Harten [34], and many others, schemes with the effective order of approxi-
mation higher than the first were suggested. When these works appeared I had already left
the Institute of Applied Mathematics in Moscow, moved to Novosibirsk and was work-
ing on different projects. The most significant of these projects involved problems which
had arisen in Moscow and required thorough theoretical research. These were questions
about the precise mathematical formulation of conservation laws and thermodynamical
equalities, about energy integrals for hyperbolic problems, about the mathematically well-
posed formulation of the plasticity equations, and about the formulation of computational
problems in numerical linear algebra. As I have mentioned earlier, the last question sur-
prisingly enough resulted from the construction of two-dimensional difference schemes.
Researching all these numerous and interesting questions (see [17, 14]) diverted me from
the investigation of finite-difference methods and did not allow me to gain a deep perception
of the modern numerical schemes for gas-dynamics, some of which are known as “second-
order Godunov’s methods.” In all confidence I can state that I cannot consider myself to
be their author. It is possible that their real authors were inspired by my suggestion to
use the exact solutions of elementary problems as building blocks for the scheme. I have
the pleasant responsibility to cordially thank them all for the attention they paid to my
work.

Very recently, just about two years ago, I found out that V. V. Ostapenko (from the
Novosibirsk Institute for Hydrodynamics, named after M. A. Lavrentiev) is actively work-
ing on the problem of the effective precision of hydrodynamic difference schemes, using
asymptotic expansions. I suggested to him that instead of horrendous analytical construc-
tions, he should carry out an experimental investigation following the pattern we have
developed with Rjabenkii in 1957–1958. I hoped that he would also repeat our experi-
ments, and these would be finally described in detail in the literature. However, Ostapenko
concentrated his attention on a more modern Lax–Harten scheme [34], for which he also
discovered a difference between formal order of approximation and effective order of preci-
sion (order of convergence). At the same time, from the experimental results of Ostapenko
it apparently follows that the weak convergence rate for the Lax–Harten scheme is not lower
than first, i.e., higher than for my original scheme.

From my point of view, it would be very interesting today to perform experimental
investigation of precision for all practical numerical methods. It would be particularly
interesting for the two- and three-dimensional problems, for which experimental techniques
are yet to be developed.

Finally I note that the transformation of my numerical scheme into a computer program
occurred with active help of K. A. Semendjaev, whose experience most certainly contributed
to our success.

3. TWO-DIMENSIONAL PROBLEMS AND MOVING GRIDS

Even before the work on one-dimensional methods was finished, I had started to think
about two-dimensional versions of my algorithm. The first attempts to solve two-dimensional
problems were made in Stekhlov’s institute and later in our institute by K. I. Babenko and
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I. M. Gelfand. Arising difficulties were discussed at seminars with participation of M. K.
Keldish. These discussions proved to be very fruitful. For example, schemes explicit in one
variable and implicit in another (“sausages”) first appeared at these meetings. Later, the first
version of a computationally effective method for block-diagonal systems (a generalization
of what is known in English as the Thomas algorithm) was put forward by Keldish and
investigated by K. I. Babenko and N. N. Chentsov. For a long time a presentation made
by O. V. Lokutsievskii about the instability of a contact discontinuity (based on a chapter
from Rayleigh’s book “Theory of Sound”) was discussed. It can be shown that the time
evolution of a contact discontinuity is governed by equations for which a Cauchy prob-
lem is ill-posed in the Hadamard sense (not just unstable). Ill-posedness is manifested in
the fact that the amplitude of short waves grows unlimitedly fast. Instability is a similar
phenomenon; however, the characteristic time for the amplitude growth is bounded for all
wavelengths. It was assumed that the processes governed by ill-posed equations cannot be
solved by numerical methods. Everybody expected the schemes to become unstable. We
talked about some artificially imposed regularization of the boundary conditions on the
contacts, but I do not remember if any realistic suggestion for this regularization was ever
made.

As a result of these discussions, I developed an intense fear of flows in which con-
tact discontinuities were a possibility. However, at that time there was a large interest in
problems which were almost one-dimensional, e.g., problems with slightly curved shocks
and sound waves and close-to-planar contact discontinuities. It occurred to me that for
this class of problems a simple generalization of my scheme could be used, and I started
to work on this modification. My research was approved by Keldish and Gelfand. K. A.
Bagrinovskii and G. B. Alalikin took an active part in the development of the first variant
of the algorithm. Later, A. V. Zabrodin joined our team. The program was again written by
V. V. Lucikovich and G. N. Novozhilova. As usually happens, when our two-dimensional
codes were ready, the pressure from engineers pushed us to more and more complicated
problems. This required further refinement and improvement of the codes and numerical
methods. Busy with all the tailoring, we completely forgot about the major danger—the
ill-posedness of the contact discontinuity, and as far as I know, it never appeared as a
problem.

I am still perplexed that we never had any problems with regard to the ill-posedness of
contacts. Apparently, the difference equations applied to the calculations of the motion of
discontinuities provide some kind of regularization. If this is true, one should be concerned
with the mechanism of this regularization, which is unknown and, thus, might have some
undesired side-effects.

From my point of view,a detailed study of algorithms used in calculations of contact
discontinuities is still an important task.I am sure that even now a number of new phenomena
are waiting to be discovered.

One should note that calculations with moving grids, in which the movement of the
discontinuities induces the movement of the nodes of a two- or three-dimensional grid, have
not yet been thoroughly investigated, neither theoretically nor experimentally. I am certain
that the feed-back effects of the grid motion on the motion of the wave are still unknown.

The first question we faced in our attempts to generalize our method for two dimen-
sions was how to find a solution of the two-dimensional Riemann problem with arbitrary
initial conditions. Rectangular cells can border not only along the sides but also in the
corners, where four different cells touch each other. In order for a two-dimensional method
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to be absolutely similar to the one-dimensional one we needed an analytical solution of
the gas-dynamic equations with four initial discontinuities coming together in a single
point. Naturally, we did not have these solutions at that time and they are still unknown
(for general initial conditions). At this point, a roguish suggestion was made which was to
use only the solutions of a classical Riemann problem involving only planar waves. Thus, the
interaction of the four cells with a common vertex was neglected altogether. This removed
a nice physical interpretation underlying the construction of the one-dimensional scheme.
Quite naturally, there were many arguments during the discussion of this hardly justifiable
suggestion. Eventually, we decided to test the method by a calculation of a shock, or even
an acoustic wave, traveling along the diagonal of the grid. Meanwhile, L. V. Brushlinkii,
on the advise of Gelfand, carried out the analytical solution for an acoustic wave propa-
gating in stationary media, which took into account the interaction of the cells sharing a
common vertex. He used Sobolev’s method of functionally invariant solutions. His solution
was implemented in a scheme completely analogous to the one-dimensional one. After that,
we compared the calculations of diagonally propagating waves using Brushlinkii’s scheme
to our simple method. To our surprise and pleasure there were no significant differences.
Afterwards, only the simpler model was used. A large effort went into the development
of a stability criterion to limit the time step for a prescribed spatial step. Originally, using
a Fourier method, Alalikin, Bagrinovskii, and I arrived at a cubic characteristic equation,
from which we obtained only the necessary stability conditions. Later, together with Bagri-
novskii, we were able to obtain sufficient stability conditions as well. In doing so, we
considered a two-dimensional method as a certain averaging of one-dimensional calcula-
tions; this technique is now known as “splitting.” This work [2] was published in 1957 at a
time when our two-dimensional code had already been used for a number of rather intricate
calculations.

The idea to use “splitting” appeared while we were investigating implicit schemes for
the two-dimensional heat equation. Similar schemes were proposed later by J. Douglas
and co-authors. However, at the time, we rejected using splitting methods for solving two-
dimensional parabolic equations.

The toughest test for gas dynamical schemes was the calculation of a discontinuous
solution. Thus, I decided to test my new scheme for the heat equationut = uxx+ uyy on the
least smooth case. I started to investigate the spreading of an initial heat pulse released in a
single computational cell. In other words, I had been trying to model a solution which after
some time should be close to

U (x, y, t) = const

t
exp

(
−x2+ y2

4t

)
.

At the least, the level contours of the solution should be convex curves—nearly circles.
To my great surprise, in the calculation, with the Courant number

1t

1x2+1y2
≈ 10,

these contours turned out to be cross-like, at least for the first few steps. The results heav-
ily discouraged me from using splitting methods for the heat equation. Nevertheless, this
research suggested the use of splitting for proving the stability of gas dynamical schemes,
and also for the organization of a computer program.
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The first two-dimensional program was written in such a way that, in subsequent steps,
it used fluxes calculated with the one-dimensional method in alternating grid directions. It
did not cause any troubles, but later we quit using directional splitting in explicit schemes
on the suggestion of Lucikovich, who claimed that he could make the codes simpler and
more efficient without splitting. Before that, we were sure of the opposite, that splitting
would make our codes faster.

I have already said that, for two-dimensional problems, we had to switch from Lagrange
to Euler coordinates. Then, in order to connect the grids with the moving boundaries, we
had to make the grids move as well. This also allowed us to consider shock waves as a
special type of boundary. It turned out to be very useful in the above-mentioned calculation
of the flow past a sphere [31].

I should mention that in the first versions of our two-dimensional methods we were
extremely careful about the construction of the grid cells and wrote the difference schemes
for conservation laws very pedantically. For example, we used the arcs of logarithmic spirals
as the boundaries of the cells and the exact analytical expressions for the integrals over the
cells bounded by these spirals. It was only a few years later when we allowed ourselves to
introduce some simplifications. The hard work of evaluating the numerous required integrals
was performed by K. A. Bagrinovskii and A. V. Zabrodin.

Even in one-dimensional calculations using Lagrangean coordinates we were trying to
improve the accuracy by tracing the motion of the strongest shock waves. In order not to
smear out the waves, their positions were marked and the cells where these waves were
located were split into two parts. Hugoniot relations were used to calculate the motion of
the waves. When we started to use the Euler coordinates the need to distinguish between the
two types of the boundaries (shocks and contacts) disappeared. This simplified the logistics
of the algorithms and allowed us to introduce a new type of boundary, with a prescribed
initial position and motion, which did not affect the flow in any way. These boundaries were
suggested by Zabrodin and were referred to as “Euler boundaries.”

The coordinates of the grid nodes inside a domain surrounded by boundaries of different
types were calculated by a simple interpolation from the boundaries. Of course, the move-
ment of the boundaries at each step caused the motion of the grid nodes. Programs with this
kind of grid structure allowed us to achieve better accuracy, not through the improvement
of the difference schemes, but just because the grids were adapted to the solution structure
and the strong discontinuities were carefully traced and not smeared out. During the work
with these types of codes I got an impetus to replace the interpolation for the internal grid
nodes by a solution of a system of differential equations which described a mapping from
the domain in question onto some standard domain as a rectangle. We started to study this
problem with G. P. Prokopov and spent seven years (1961–1968) before the first acceptable
results emerged [13, 19, 22].

I am still concerned with the type of mapping that should be used for the grid generation,
although I quit working on difference schemes a very long time ago [28].

From the very start of this work, we postulated that the mapping should be a solution of
an elliptic system of equations. Our main effort was concentrated on solving these equations
effectively. We decided to use a variational approach utilizing the finite-element method.
However, we did not dare to test this approach by calculating the grid for a real gas-dynamic
problem with moving boundaries, since solving an elliptic problem at each time step would
be costly. First, it was decided to use a variational approach in some stationary problem.
Specifically, we applied our developments to the calculation of critical parameters of nuclear
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reactors [38]. I have mentioned before that it was during this work that my interest in the
computational problems of linear algebra was awakened. Later in my career I devoted most
of my attention to these types of problems.

Only after success with stationary problems did we dare to build computational grids at
every time step by solving elliptic equations. The first more or less general-purpose computer
code of this type started to operate in the end of 1968 or in the beginning of 1969. The first
problem was applied to provided the basis of a paper [33]. This paper was an expanded
version of our presentation at the International Conference on the Physics of Explosion
(Novosibirsk, 1969). This work was devoted to the wave generation during welding by
explosion and contained the analysis of the experiments performed at the Novosibirsk
Institute for Hydrodynamics.

In September 1969, I moved to Novosibirsk and since then have done little work with
regard to numerical schemes.

It seems to be worth mentioning that while developing the schemes for two-dimensional
calculations we had been simultaneously applying them to one-dimensional problems, try-
ing to get the best possible precision. The extraction as boundaries of contact discon-
tinuities, shock waves and characteristics bounding the rarefaction waves allowed us to
segregate the computational domain into subdomains inside of which the solution was
supposed to be smooth. Inside these domains we were able to use second-order meth-
ods. It is very important that for each rarefaction wave from the moment of its emer-
gence from an arbitrary discontinuity a large number (for example, 50) of grid points was
reserved. This provided very high precision and was possible because we used implicit
schemes.

I developed the described methods together with I. L. Kireeva and L. A. Pliner, while
the logistics of the algorithm were put forward by G. B. Alalikin. He also wrote a general-
purpose computer program on the basis of our algorithm. This code was used for a number
of high-precision calculations. All these methods were described in our book [1] published
in Russian in 1970. I think it passed unnoticed. At the same time, I believe that specialists
in computational fluid dynamics even today can find something interesting in it.

I should note that under some pressure from engineers and Semendjaev, parallel to the
work on the two-dimensional scheme, I had to work on the method of characteristics as
well. I had been trying to make it suitable for computer implementation by reorganizing
the information structure. This resulted in the methods of “characteristics layers,” in which
not the intersections of characteristics were calculated, but rather the coordinates where
the characteristics cross the layerst = const. However, when the work was finished and a
rather intricate general-purpose program was written, we discovered flaws in the method.
The very first tests showed that it failed for calculations with strong rarefaction waves. This
was a surprise since we expected the method to perform better in such cases than anything
else. A brief report on this failure was published [26]. The failure itself pushed me to the
development of a second-order method with discontinuities extracted as boundaries, which
is discussed in the above-mentioned book [1].

Wide recognition of the difference scheme for gas dynamics based on the break up of an
arbitrary discontinuity started in 1969. This year at the conference in Novosibirsk there were
in total three independent presentations related to our scheme. I have already mentioned our
report. In addition to that, there was a presentation by M. Ja. Ivnanov and A. N. Kraiko from
the Moscow Central Institute for Aircraft Engines (we did not know each other before) and a
presentation by T. D. Taylor and B. S. Mason (U.S.A.) about the application of our scheme to
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the flow around the return vehicle “Apollo” [36, 41]. Together with our colleagues from the
Institute for Aircraft Engines, we later prepared a detailed description of our computational
methods and published it as a book which was translated into French [15].

4. CONSERVATION LAWS AND THERMODYNAMICS

Finally, I will briefly discuss one more issue closely related to the concept of generalized
solutions of quasi-linear systems of conservation laws. This is another example of research
which arose during my work on difference schemes.

As it was mentioned above, mass, momentum, and energy are conserved exactly for
the numerical solutions calculated with my scheme. However, the classical (smooth) so-
lutions of gasdynamical equations obey an additional conservation law—that of entropy.
Zemplen’s theorem states that across a shock wave (discontinuity in the solution) entropy
increases. In the theory of quasi-linear equations this statement is very important in the
definition of generalized solutions. It outlaws the flows which are in agreement with the
conservation of mass, momentum, and energy, but for which the entropy is decreasing for
a certain mass of gas. In my original scheme the entropy was automatically nondecreasing
because the update method used the physical solutions of the Riemann problem, which
comply with the entropy principle. Each time step was finished by averaging the state
variables over the cells, and one can easily show that this process can only increase the
entropy.

Naturally, I got interested in the class of quasi-linear systems of equations forn un-
knowns which satisfyn+ 1 conservation laws. While pondering these systems in gen-
eral, I noticed that all the nonlinear relations in the equations of hydrodynamics are com-
pletely determined by a single function—the thermodynamic potentialE(V, S). Gelfand
had mentioned an important role of the inequalitiesES> 0 and EV V ESS− E2

V S> 0 in
his lectures on the theory of quasi-linear equations. He gave these lectures at Moscow
University, and later his lecture notes were published as a book [6]. These inequalities
are used in thermodynamics for gases and liquids whenV andS are far from the phase-
transition values. As a problem, Gelfand suggested proving that these inequalities ensure
the well-posedness of the wave propagation problem in the acoustic approximation for
heat-conducting gases. Influenced by that problem, I got the idea that a similar consid-
eration about well-posedness or about stability (at least in the case of a finite number of
degrees of freedom) can be based on the famous theorem of thermodynamics about the
existence of a universal integrating multiplier 1/T for d E+ pdV. This theorem underlies
the definition of the entropy asdS= (1/T)(d E+ pdV). After a few months of intensive
work, I was able to justify this hypothesis [9]. As a by-product I proved that the stability
which makes impossible a perpetual motion machine of the second type always results
from the existence of some integral, which is dissipated by heat-conduction. In the limit
of small oscillations (i.e., when the evolution of the system is described by a linear system
of equations) this integral turns out to be a quadratic form with a symmetric and positive-
definite matrix of coefficients. The symmetry of the matrix leads to the equalities which are
needed to derive the existence of the universal integrating multiplier. My paper [9] (see also
Section 22 of the book [14]) had the blueprints of a mechanism that would have been the
perpetual engine of the second type in a world without the universal integrating multiplier.

After this work [9], trying to understand the reason why a system of three equations would
have an “extra” fourth conservation law, it was very natural to write the hydrodynamic
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equations in Lagrangean coordinates (applicable for the classical smooth solutions),

∂V

∂t
+ ∂u

∂x
= 0,

∂u

∂t
+ ∂EV (V, S)

∂x
= 0,

∂S

∂t
= 0,

and to derive the fourth conservation law as their linear combination

0 = ∂(E(V, S)+ u2/2)

∂t
+ ∂(uEV (V, S))

∂x

= EV (V, S)

[
∂V

∂t
+ ∂u

∂x

]
+ u

[
∂u

∂t
+ ∂EV (V, S)

∂x

]
+ ES

∂S

∂t
.

This equation shows that the four conservation laws are linearly dependent. Then, of course,
any of the four conservation laws can be composed of the other three. For instance, con-
servation of entropy∂S

∂t = 0 may be expressed as a linear combination of conservation of
specific volume

∂V

∂t
+ ∂u

∂x
= 0,

conservation of momentum

∂u

∂t
+ ∂EV

∂x
= 0,

and conservation of energy as

0= ∂S

∂t
= −EV

ES

[
∂V

∂t
+ ∂u

∂x

]
− u

ES

[
∂u

∂t
+ ∂EV

∂x

]
+ 1

ES

[
∂(E + u2/2)

∂t
+ (uEV )

∂x

]
.

The last equality uses the relation between the differentials,

dS= −EV

ES
dV − u

ES
du+ 1

ES
d

(
E + u2

2

)
.

It is convenient to rewrite this relation as

d

[
S+ EV

ES
V + u2

2ES
− 1

ES

(
E + u2

2

)]
= V d

EV

ES
+ ud

u

ES
−
(

E + u2

2

)
d

1

ES
.

Now we introduce the notation

L = S− 1

ES

(
E + u2

2

)
+ V EV

ES
+ u2

2ES
= 1

ES
[SES+ V EV − E],

q1 = EV

ES
, q2 = u

ES
, q3 = − 1

ES
= − 1

T
.
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Finally, we can relate the derivativesLqi to the hydrodynamical quantities

Lq1 = V, Lq2 = u, Lq3 = −(E + u2/2).

The relation between differentialsdS, dV, du, d(E+ u2/2) takes the beautiful form of the
Legendre transformation from the theory of convex functions,

d
(
q1Lq1 + q2Lq2 + q3Lq3 − L

) = Lq1dq1+ Lq2dq2+ Lq3dq3.

It is convenient to introduce one more function

M = −q1q2

q3
.

Then

Mq1 = −
q2

q3
= u,

Mq2 = −
q1

q3
= EV ,

Mq3 = −
q1q2

q2
3

= uEV ,

M − q1Mq1 − q2Mq2 − q3Mq3 = 0.

This allows one to write the hydrodynamic equations as

∂Lqi

∂t
+ ∂Mqi

∂x
= 0, i = 1, 2, 3.

They consist of three conservation laws, and the additional fourth conservation law

∂
(
q1Lq1 + q2Lq2 + q3Lq3 − L

)
∂t

− ∂
(
M − q1Mq1 − q2Mq2 − q3Mq3

)
∂x

≡ ∂
(
q1Lq1 + q2Lq2 + q3Lq3 − L

)
∂t

= 0

coincides with the conservation of entropy∂S
∂t = 0. After this, it was not too difficult to rewrite

a number of other classical equations of mathematical physics (even multi-dimensional) in
a standard form

∂Lqi

∂t
+ ∂L j

qi

∂xj
= 0.

I succeeded in writing out in a similar form the gasdynamic equations in Euler coordinates
as well. I was very glad to be able to show that if the generating “thermodynamic potential”
is convex then these equations can be cast into a form of a symmetric hyperbolic system
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(in the Friedrichs sense)

Lqi qk

∂qk

∂t
+ L j

qi qk

∂qk

∂xj
= 0.

The matrix multiplying the time-derivative is positive-definite. K. O. Friedrichs showed that
for these equations the Cauchy problem is well-posed if the initial conditions are smooth
enough.

In such a way, my hopes to show the connection between well-posedness and the laws
of thermodynamics started to take a solid form.

I have described my achievements in a paper, submitted toUspekhi Matematicheskikh
Nauk.It was not published though, since the referee denied its mathematical content.

Soon after this I experienced yet another unpleasant twist of fate. I decided to add a small
dissipation to the above form of the equations to investigate the structure of discontinuities.
I was interested to know if the viscosity smears discontinuities only over a thin region, and
if the limiting solutions for vanishing viscosity do not depend on the particular form of the
dissipative term. Considering steadily propagating wavesqi =qi (ξ), ξ = (x−wt)/ε for the
equations

∂Lqi

∂t
+ ∂Mqi

∂x
= ∂

∂x

[
εbik(q)

∂qk

∂x

]
,

I was able to obtain a nice geometrical interpretation for the ordinary differential equations,
satisfied byq(ξ). This interpretation helped me to construct a system of hyperbolic conser-
vation laws for which the admissible discontinuous solutions do depend on the form of the
dissipation terms (while still satisfying the entropy condition). In a real physical problem
the dissipation processes can be very different from those in the numerical calculation.
Different numerical schemes have different dissipation properties. Soon afterwards, V. F.
Diachenko suggested an example in which different difference approximations resulted in
very dissimilar numerical solutions [3].

At that time I was very depressed because my hope to justify all the hypotheses underlying
my difference scheme collapsed. My paper with the description of the above-mentioned
counter-example was communicated toDokladi AN SSSRby I. G. Petrovskii [10, 11]. Even
before the article was published I presented it at a seminar where R. Courant and P. D. Lax
were present. It was during their first visit to Moscow.

Later, in Novosibirsk, together with my colleagues I continued the investigation of the
conservation laws and their relation to thermodynamics. An overview of a large part of this
research can be found in the presentation [17], which I made in 1986 in St.-Etienne, France,
at the conference on hyperbolic equations. One should also note the important contributions
to this subject [5, 4] made by Lax and Friedrichs. Recently this work was continued even
further and became the subject of the presentations by E. I. Romenskii and myself at Lisbon
[23], Lake Tahoe [24], and Paris [25]. Another work of ours (together with T. Yu. Mihailova)
is devoted to a similar issue [29]. In [25, 29] an unexpected connection between the formally
overdetermined systems of conservation laws of mathematical physics and the theory of
representation of the rotation group has been shown.

Finally, I mention a recent work [40] in which estimates of the entropy growth for the
systems introduced above were made. The author succeeded in relating these estimates to
the variation of the solution. I found the method for determining this variation suggested in
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the article to be very promising. For this method it makes no difference if the problem in
question is one- or multi-dimensional.

5. CONCLUSION

In these notes I have tried to recount the intensive work in the field of numerical hy-
drodynamics in which I took part; this work resulted in the development of “Godunov’s
scheme.”

I want to emphasize that during that period I was influenced by the whole scientific
community I was immersed in. Of course, there were many other research groups working
on different approaches to numerical hydrodynamics. Some of these groups belonged to the
institute where I worked. The more famous scientists associated with other computational
fluid mechanics groups of that time are K. I. Babenko, V. V. Rusanov, I. M. Gelfand, V. F.
Diachenko, A. A. Samarskii, N. N. Janenko, B. L. Rozhdestvenskii, and others. I did not
try to describe the whole history of the subject, but rather, to tell about some of the research
activity in which I took part myself.

I greatly benefited from numerous discussions with prominent theoreticians of that time,
such as Ya. B. Zeldovich, A. D. Sakharov, D. A. Frank-Kamenetskii, Yu. B. Hariton, as
well as members of the experimental group of L. V. Altshuler. I should mention that the
comments of physicists were often very fault-finding. They stimulated the detailed analy-
sis of the causes of numerical effects and often led to modifications and improvements of
the method. The specific problem for stationary flow past a body was suggested to me by
G. I. Petrov.

I also wanted to show how a whole series of important scientific questions appeared
during the initial stage of the development of computational fluid dynamics. Many of these
questions are still unresolved.
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